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Abstract. New uncertainty relations forn observables are established. The relations take the
invariant form of inequalities between the characteristic coefficients of orderr, r = 1, 2, . . . , n,
of the uncertainty matrix and the matrix of mean commutators of the observables. It is shown
that the second- and third-order characteristic inequalities for the three generators ofSU(1, 1)
and SU(2) are minimized in the corresponding group-related coherent states with maximal
symmetry.

1. Introduction

The uncertainty relations (UR) are basic nonclassical features of quantum theory. In recent
decades they have been extensively used in quantum optics for constructing the so-called
nonclassical states [1]. In 1927 Heisenberg [2] formulated the uncertainty principle as the
impossibility to determine simultaneously the positionq and momentump of a particle with
an accuracy higher than the Plank constant ¯h: the product of the uncertainties1p, 1q in p
andq should not be less than ¯h, 1p1q ∼ h̄. It was Weyl [2] who proved the ‘Heisenberg
uncertainty relation’ forp and q (12p12q > h̄2/4) and Robertson [3] who extended the
latter to arbitrary two quantum observables (Hermitian operators)X andY ,

12X12Y > 1
4|〈[X, Y ]〉|2 (1)

where [X, Y ] is the commutator ofX andY , 〈X〉 is the average value ofX and12X is
the variance ofX. Nevertheless, the inequality (1) is referred to as Heisenberg UR for two
observables. A more precise inequality for two observables was established by Schrödinger
[4],

12X12Y − (1XY)2 > 1
4|〈[X, Y ]〉|2 (2)

where1XY = 〈XY + YX〉/2 − 〈X〉〈Y 〉 is the covariance ofX and Y . The coherent
states (CS) [5] and squeezed states [1] of the one-mode radiation field widely discussed
in the literature are pure quantum states in which the inequalities (1) and/or (2) for the
two canonical observablesp andq ([p, q] = −ih̄) are minimized [5–7]. The minimization
of the Schr̈odinger UR for two observables was considered in [8], where the minimizing
states for two generators of the groupsSU(1, 1) andSU(2) have also been constructed and
discussed.

An important advantage of the Schrödinger formulation of the uncertainty principle is
the invariance of the equality in (2) under linear nondegenerate transformations ofX andY
[9, 10], in particular under linear canonical transformations ofp andq [6, 11, 10]. Robertson
[12] extended UR (1) to arbitraryn observablesXj , j = 1, 2, . . . , in the invariant form

detσ(X; ρ) > detC(X; ρ) (3)
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whereσ(X; ρ) is the uncertainty (the dispersion or the covariance) matrix ofn observables
in the (generally mixed) stateρ, σjk = 〈XjXk + XkXj 〉/2 − 〈Xj 〉〈Xk〉, and C(X; ρ)
is the n × n matrix of mean values of the commutators [Xj,Xk] times a factor 1/2i,
Cjk = (−i/2)〈[Xj,Xk]〉. The uncertainty matrixσ(X) is symmetric, and the mean
commutator matrixC(X) is antisymmetric. The other important advantage of Robertson
UR is in its free integer parametern. This enables one to treat more complicated algebras
(of observables) with any finite dimension.

The aim of this paper is to establish a new series of uncertainty relations, which we call
thecharacteristic UR. The Robertson UR appears as one of the family of characteristic UR.

The idea is to consider the matricesσ and C as matrices of linear maps in then-
dimensional vector spaceEn, spanned by the operatorsXj , j = 1, 2, . . . , n. The quantities
detσ and detC, which enter the Robertson UR, appear as characteristic coefficientsC(n)n (σ )

andC(n)n (C) of the characteristic polynomials ofσ andC and the natural question arises
whether there are inequalities which relate the other characteristic coefficientsC(n)r (σ ) and
C(n)r (C), r = 0, 1, . . . , n. The answer turned out to be positive and the corresponding
characteristic inequalities are established below.

2. Characteristic uncertainty relations

In order to extend the Robertson UR to the other characteristic coefficients let us first recall
[10] the transformation properties of the dispersion matrixσ(X) and the matrix of mean
commutatorsC(X) under linear transformations of the operatorsXj ,

Xj → X′j = λjkXk or in matrix formX ′ = 3X. (4)

Using the definition ofσ andC we easily obtain

σ(X ′) ≡ σ ′ = 3σ3T C ′ ≡ C(X ′) = 3C3T (5)

where3T is the transposed of3. If the transformation matrix is real and nonsingular then
the newn operatorsX′j are again Hermitian andσ ′ is their dispersion matrix.

The transformation law (5) ensures the invariance of the equality in (3) under nonsingular
linear transformations of observables (4),3 ∈ GL(n,R). If the operatorsXj close a Lie
algebraL, then the equality in the Robertson UR is invariant under the transformations
of the group Aut(L) of automorphisms ofL. It is curious that the equality in (3) is
invariant under a wide class of nonlinear state-dependent transformations ofXj . Such are
the transformations (5) with3 = σ or 3 = C in cases of detC > 0.

With the aim of establishing new uncertainty inequalities let us now consider the
characteristic equations for matricesσ andC (λ andµ are parameters),

0= det(σ − λ) =
n∑
r=0

C(n)r (σ )(−λ)n−r 0= det(C − µ) =
n∑
r=0

C(n)r (C)(−µ)n−r . (6)

These equations are invariant under similarity transformationsσ → 3σ3−1, C → 3C3−1.
The invariant coefficientsC(n)r (σ ) (C(n)r (C)), r = 0, 1, . . . , n, in (6) are called the
characteristic coefficientsof σ (C) [13]. If one treatsσ and C as linear maps in an
n-dimensional vector spaceE (E 3 y = σx, x ∈ E), thenσ ′ = 3σ3−1 andC ′ = 3C3−1

represent the same maps in the new basis ofE (related to the old one by means of matrix
(3T)−1). The characteristic coefficientsC(n)r (φ) of a matrixφ are equal [13] to the sum of
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all principle minorsM(i1, . . . , ir;φ) of orderr,

C(n)r (φ) =
∑

16i16i26···6n

∣∣∣∣∣∣∣
φi1i1φi1i2 . . . φi1ir
φi2i1φi2i2 . . . φi2ir
. . . . . . . . . . . .

φir i1φir i2 . . . φir ir

∣∣∣∣∣∣∣ ≡
∑

16i16i26···6n
M(i1, . . . , ir;φ). (7)

One hasC(n)0 = 1, C(n)1 = Trφ =∑φii andC(n)n = detφ. Forn = 3 we have, for example,
three principle minors of order 2, i.e.

C
(3)
2 (φ) =

∣∣∣∣φ11φ12

φ21φ22

∣∣∣∣+ ∣∣∣∣φ11φ13

φ31φ33

∣∣∣∣+ ∣∣∣∣φ22φ23

φ32φ33

∣∣∣∣ (8)

where|φ| ≡ detφ for a matrixφ. In these notations Robertson UR (3) readsC(n)n (σ (X)) >
C(n)n (C(X)) for any quantum state. We shall now show that similar inequalities hold for
the other characteristic coefficients ofσ andC, namely

C(n)r (σ (X)) > C(n)r (C(X)) r = 1, 2, . . . , n. (9)

The key observation to this aim is that the principle submatricesσ(Xi1, . . . , Xir ; ρ),
i1 < i2 < · · · < ir ,

σ(Xi1, . . . , Xir ; ρ) =


σi1i1σi1i2 . . . σi1,ir
σi2i1σi2i2 . . . σi2ir
. . . . . . . . .

σir i1σir i2 . . . σir ir

 M(i1, . . . , ir; σ) = detσ(Xi1, . . . , Xir )

(10)

can be regarded as uncertainty matrix forr observablesXi1, . . . , Xir with C(Xi1, . . . , Xir ; ρ)
as the corresponding mean commutator matrix. Therefore the inequality (3) holds for the
principle minors as well:

detσ(Xi1, . . . , Xir ; ρ) > detC(Xi1, . . . , Xir ; ρ). (11)

It is worth recalling now thatσ(X) andC(X) are non-negative definite [10] and therefore
all of their principle minors are also non-negative [13],

M(i1, . . . , ir; σ) > 0 M(i1, . . . , ir;C) > 0. (12)

From (12) and (7) we derive that the inequalities (9) do hold. We shall call these inequalities
the characteristic URfor n observables (Hermitian operators). The two sides of these
relations are invariant under similarity transformationsσ → 3σ3−1 andC → 3C3−1.
The transformed matrixσ ′ = 3σ3−1 can be considered as an uncertainty matrix for new
n observablesX′j in the same stateρ iff 3−1 = 3T as is seen from (5). Therefore
the characteristic UR (9) are invariant under linear transformation of the observables with
orthogonal3.

On the other hand, there are trace class invariant coefficients, related to anyn × n
matrix, and one can look for uncertainty inequalities involving these coefficients for the
physical matricesσ andC. A series of such inequalities for positive definite 2N × 2N
dispersion matrices for 2N observables are established in [10] (the particular case of
canonical observables being considered in [11]),

Tr(iσ(X, ρ)J )2k > 21−2k
N∑
j=1

|〈[X′ν, X′N+ν ]〉|2k k = 1, 2, . . . , J =
(

0 −1
1 0

)
(13)

whereX′j = 3(ρ)jlXl , 3 being the symplectic matrix which diagonalizesσ(X; ρ) [10].
The traces Tr(iσ(X, ρ)J )2k are invariant under symplectic transformations3. If the
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operatorsXj close a Lie algebraL with a Cartan–Killing tensorg then Tr(σ (X, ρ)g)2k

is invariant under the group of automorphisms ofL. At k = 1 = N one has
Tr(iσ(X, ρ)J )2k = detσ(X, ρ) and (13) coincides with (2).

3. Minimization of the characteristic uncertainty relations

The minimization of inequalities (1) and (2) proved useful in constructing states with
interesting physical and mathematical properties. States which minimize a certain
uncertainty relation will be called minimum uncertainty states (MUS) or intelligent states
(see [8, 10] and references therein). States which minimize (2) (or (1)) are called Schrödinger
(Heisenberg) MUS or intelligent states (or correlated coherent states [6]). For any pair
of observablesX, Y the necessary and sufficient condition for a state|9〉 to minimize
Schr̈odinger UR (2) is|9〉 to be an eigenstate of a complex combination ofX, Y [8],

(uA+ vA†)|9〉 = z|9〉 A = X + iY u, v ∈ C. (14)

For X, Y being the quadraturesp, q of boson annihilation operatora Schr̈odinger MUS
coincide [7] with standard (or canonical) squeezed states [1]. The family of Schrödinger
MUS |z, u, v; k〉 for the two quadratures of the Weyl lowering operatorK− for the su(1, 1)
algebra was constructed in [8] using the analytic representation of Barut and Girardello [14].

The minimization of Robertson UR was studied in [10]. Robertson MUS exist for a
broad class of physical systems. It was shown [10] that group-related CS with maximal
symmetry for semisimple Lie groups are Robertson MUS for the quadratures of Weyl
lowering operators. For an odd numbern of observablesXi a necessary and sufficient
condition for a state|9〉 to minimize (3) is |9〉 to be an eigenstate of a real linear
combination of all observables. This condition remains sufficient for evenn, n = 2N ,
as well. For evenn another sufficient condition is|9〉 to be an eigenstate ofN complex
combinations ofXi ,

(βαiXi)|9〉 ≡ (uαβAβ + vαβA†β)|9〉 = zα|9〉 (15)

wherei = 1, . . . , n, α, β = 1, 2, . . . , N , Aα = Xα + iXα+N and summation over repeated
indices is adopted. The above conditions are satisfied by theN -mode canonical CS (u = 1,
v = 0, Aα = aα); by canonical squeezed states (uu† − vv† = 1, Aα = aα) and by canonical
even/odd CS (u = 1, v = 0, Aα = a2

α), i.e. these important in quantum optics states are
Robertson MUS for the quadratures of allaα anda2

α correspondingly [10].
Using the structure (7) of the characteristic coefficients and the non-negativity of the

principle minors involved one can easily establish the following minimization conditions
for (9).

Proposition 1.The rth-order characteristic UR (9) is minimized in a state|9〉 if |9〉 is a
Robertson MUS for every set ofr observablesXi1, Xi2, . . . , Xir , 16 i1 < i2 < · · · < ir 6 n.

The characteristic UR of maximal orderr = n is that of Robertson and its minimization
conditions were listed just above [10].

Now it is of principle importance to show that therth-order characteristic MUS for
r 6 n do exist. It is clear that the first-order characteristic UR is trivial since it reads
σ11+ σ22+ · · · + σnn > 0, where all variancesσii ≡ 12Xi are non-negative in any state.
Its minimization is also clear—it is minimized in the common eigenstates ofXi only. The
case ofr = n was examined in [10]. So we have to provide the minimization ofrth-order
characteristic UR, 26 r < n.
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To this aim let us consider the family ofsu(1, 1) algebra related CS|z, u, v,w; k〉,
which are eigenstates of the general element of the algebra in the representationsD+(k),
k = 1

4,
3
4 andk = 1

2, 1, . . . ,

(uK− + vK+ + wK3)|z, u, v,w; k〉 = z|z, u, v,w; k〉. (16)

HereK± = K1 ± iK2 are Weyl raising and lowering operators andK1,2,3 are Hermitian
generators of the groupSU(1, 1). The solution to equation (16) was obtained in [9, 15, 10],
the casew = 0 being solved previously in [8]. The large family of|z, u, v,w; k〉 contains all
SU(1, 1) group-related CS with symmetry (see [5] and references therein), the Schrödinger
K1–K2 MUS |z, u, v,w = 0; k〉 ≡ |z, u, v; k〉 containing the group-related CS with maximal
symmetry [8]. In the limitu = 1, v = 0 = w the CS|z; k〉 of Barut and Girardello [14]
are reproduced:|z; k〉 = |z, u = 1, v = 0, w = 0; k〉. In the analytic Barut–Girardello (BG)
representation (which can be shown to be valid fork = 1

4,
3
4 as well) the operatorsKi act

as differential operators,

K+ = η K− = 2k
d

dη
+ η d2

dη2
K3 = k + η d

dη
(17)

and the states|z, u, v,w : k〉 are represented (foru 6= 0) by the analytic functions

8z(η; u, v,w) = Necη 1F1(a, b; c1η) (18)

whereN is the normalization factor,a = k + z/l, b = 2k, c = −(w + l)/2u, c1 = l/u,
l ≡ √w2− 4uv and 1F1(a, b, z) is the confluent hypergeometric function (the Kummer
function) [16]. The limit l = 0 can be easily taken in (18), and the more simple case of
u = 0 should be treated separately [9, 15, 10].

For the three observablesK1,2,3 we have two nontrivial characteristic UR, namely those
for r = 2 andr = n = 3 in (9). The Robertson relation for the three operatorsK1,2,3 is
minimized in |z, u, v,w; k〉 for v = u∗ and realw andz [10]. Such normalized intelligent
states are, for example, theSU(1, 1) group-related CS|ζ ; k〉 with maximal symmetry,

|ζ ; k〉 = N exp(ζK+)|k, k〉 ζ ∈ C, |ζ | < 1.

These CS, which in the BG representation are represented by the analytic function
exp(ζη) of the variable η [8], obey equation (16) withv∗ = u, argu = −argζ ,
w = w∗ = |u|(1/|ζ | − |ζ |) and z = z∗ = k|u|(−|ζ | + 1/|ζ |), with u remaining arbitrary.
We are now ready to prove that|ζ ; k〉 minimize the second-order UR as well.

According to proposition 1, a state|9〉 minimizes the second-order characteristic UR for
the three observablesK1,2,3 if it is an eigenstate of the three combinationsβ1K1+ β2K2 =
uK−vK++0K3, β ′1K1+β ′3K3 = u′K−v′K++w′K3 andβ ′′2K2+β ′′3 = u′′K−v′′K++w′′K3,
for some real or complexβ1,2, β ′1,2,3 andβ ′′1,2,3,

(β1K1+ β2K2)|9〉 = z|9〉
(β ′1K1+ β ′3K3)|9〉 = z′|9〉
(β ′′2K2+ β ′′3K3)|9〉 = z′′|9〉.

(19)

In the representation (17) the system (19) takes the form of second-order differential
equations. One can check that the functions

f (η,m) = ηme−ζη (20)

satisfy the system (19) form = 0 and form = 1− 2k if

β1 = iβ2
1− ζ 2

1+ ζ 2
β ′1 = 2β ′3

ζ

1+ ζ 2
β ′′2 = 2iβ ′′3

ζ

1− ζ 2
(21)
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the eigenvalues beingz = (k + mζ)2iβ2ζ
2/(1+ ζ 2), z′ = (k + m)β ′3(1− ζ 2)/(1+ ζ 2),

z′′ = (k + m)β ′′3(1+ ζ 2)/(1− ζ 2) (with β ′′3 , β ′3 andβ2 remaining arbitrary). This proves
that the group-related CS|ζ ; k〉 areC(3)2 andC(3)3 characteristic MUS. Let us recall that
the groupSU(1, 1) has important (in quantum optics and other fields of quantum theory)
one-mode (k = 1

4,
3
4) and two-mode (k = 1

2, 1, . . .) boson representations. In the one-mode
case the CS|ζ ; k = 1

4〉 coincides with the canonical squeezed vacuum [1].
In a similar manner, using the results of papers [8, 10, 15] for example, one can establish

that theSU(2) group-related CS with maximal symmetry (the Bloch CS) areC
(3)
2 andC(3)3

characteristic MUS.
Thus, the characteristic UR can be used for finer classification of quantum states. For

a given algebra they all are within the large set of eigenstates of general algebra element
(algebraic CS [9, 15]).

4. Concluding remarks

On the abstract matrix level Robertson proved [12, 17] that ifH = S + iK is non-
negative definite Hermitian matrix (whereS andK are real) then detS > detK. Matrix
σ(X)+ iC(X) is Hermitian and non-negative, therefore detσ > detC. Using Robertson’
result we have proved in the above that if the combinationS + iK of two real matricesS
andK is non-negative and Hermitian then the characteristic coefficients ofS andK obey
the inequalities

C(n)r (S) > C(n)r (K) r = 1, 2, . . . , n. (22)

The importance of the characteristic coefficients of a matrix is surely beyond doubt. In
differential geometry and differential topology of fibre bundles with connections they are
widely used as generators of topological invariants of the bundles by means of the De Rham
cohomology of the corresponding base spaces [18]. In gauge field theories they are also
well known and appropriately used [19]. It is our belief that the characteristic inequalities
(22) will also be useful in the above-described fields.
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