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Abstract. New uncertainty relations fot observables are established. The relations take the
invariant form of inequalities between the characteristic coefficients of erdee= 1,2, ..., n,

of the uncertainty matrix and the matrix of mean commutators of the observables. It is shown
that the second- and third-order characteristic inequalities for the three generafiyg1ofl)

and SU(2) are minimized in the corresponding group-related coherent states with maximal
symmetry.

1. Introduction

The uncertainty relations (UR) are basic nonclassical features of quantum theory. In recent
decades they have been extensively used in quantum optics for constructing the so-called
nonclassical states [1]. In 1927 Heisenberg [2] formulated the uncertainty principle as the
impossibility to determine simultaneously the positipand momentunp of a particle with

an accuracy higher than the Plank constanthe product of the uncertaintigsp, Ag in p

andg should not be less than ApAg ~ k. It was Weyl [2] who proved the ‘Heisenberg
uncertainty relation’ forp andg (A2pA2g > h?/4) and Robertson [3] who extended the
latter to arbitrary two quantum observables (Hermitian operatdérapdy,

APXAPY > (X, YD @
where [X, Y] is the commutator of andY, (X) is the average value of and A%X is
the variance ofX. Nevertheless, the inequality (1) is referred to as Heisenberg UR for two
observables. A more precise inequality for two observables was established bdiSghar
[4],

APXAPY — (AXY)? = ZUIX, YD) e

where AXY = (XY + YX)/2 — (X)(Y) is the covariance ofX and Y. The coherent
states (CS) [5] and squeezed states [1] of the one-mode radiation field widely discussed
in the literature are pure quantum states in which the inequalities (1) and/or (2) for the
two canonical observablgs andq ([p, ¢] = —ih) are minimized [5-7]. The minimization
of the Schodinger UR for two observables was considered in [8], where the minimizing
states for two generators of the groufig (1, 1) and SU (2) have also been constructed and
discussed.

An important advantage of the Séldinger formulation of the uncertainty principle is
the invariance of the equality in (2) under linear nondegenerate transformatichard Y
[9, 10], in particular under linear canonical transformationg @hdg [6, 11, 10]. Robertson
[12] extended UR (1) to arbitrary observablest;, j = 1,2, ..., in the invariant form

deto (X; p) > detC(X; p) 3
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whereo (X; p) is the uncertainty (the dispersion or the covariance) matrix albservables
in the (generally mixed) state, o, = (X; X, + XiX;)/2 — (X;)(Xk), and C(X; p)
is the n x n matrix of mean values of the commutatorX;[ X,] times a factor 12i,
Cix = (=i/2)([X;, Xx]). The uncertainty matrixo(X) is symmetric, and the mean
commutator matrixC(X) is antisymmetric. The other important advantage of Robertson
UR is in its free integer parameter This enables one to treat more complicated algebras
(of observables) with any finite dimension.
The aim of this paper is to establish a new series of uncertainty relations, which we call
the characteristic UR The Robertson UR appears as one of the family of characteristic UR.
The idea is to consider the matricesand C as matrices of linear maps in the
dimensional vector spacg,, spanned by the operatoks, j = 1, 2,...,n. The quantities
deto and detC, which enter the Robertson UR, appear as characteristic coeffici¢hits )
and C("(C) of the characteristic polynomials of and C and the natural question arises
whether there are inequalities which relate the other characteristic coefficignts) and
C™W(C), r = 0,1,...,n. The answer turned out to be positive and the corresponding
characteristic inequalities are established below.

2. Characteristic uncertainty relations

In order to extend the Robertson UR to the other characteristic coefficients let us first recall
[10] the transformation properties of the dispersion maar(¥X’) and the matrix of mean
commutatorsC(X) under linear transformations of the operatars

X; — XJ/ = Ak Xk or in matrix formX’' = AX. (4)
Using the definition o and C we easily obtain
(XY =0'=AcAT C'=C(X')=ACAT 5)

where AT is the transposed of. If the transformation matrix is real and nonsingular then
the newn operatorsX; are again Hermitian andl’ is their dispersion matrix.

The transformation law (5) ensures the invariance of the equality in (3) under nonsingular
linear transformations of observables (4),e GL(n, R). If the operatorsX; close a Lie
algebraL, then the equality in the Robertson UR is invariant under the transformations
of the group Au(L) of automorphisms ofL. It is curious that the equality in (3) is
invariant under a wide class of nonlinear state-dependent transformations &uch are
the transformations (5) witth = o or A = C in cases of def > 0.

With the aim of establishing new uncertainty inequalities let us now consider the
characteristic equations for matricesand C (A and 1 are parameters),

O=deilc — 1) =) CP@)(»'""  0=delC—m =) PO (6
r=0 r=0

These equations are invariant under similarity transformations Ac A=, C — ACA™L.
The invariant coefficientsC™ (o) (C™(C)), r = 0,1,....n, in (6) are called the
characteristic coefficientof o (C) [13]. If one treatsc and C as linear maps in an
n-dimensional vector spadé (E > y = oz, « € E), theno’ = AcA~* andC’ = ACA™?
represent the same maps in the new basig d¢felated to the old one by means of matrix
(AT)™1). The characteristic coefficien§™ (¢) of a matrix¢ are equal [13] to the sum of



Characteristic uncertainty relations 8043

all principle minorsM (iy, . . ., i,; ¢) of orderr,
¢i1i1¢i1i2 LI ¢i1i,.
S S A R R S VIR AT)) (7)
vl | e il
i i1 Viip « « - Wi i,
®i,ir® é

One hasC{" =1,C" =Tr¢ = Y ¢;; andC™ = detgp. Forn = 3 we have, for example,
three principle minors of order 2, i.e.

P11012 P11013 D220023
P21022 + P31033 + P320033 ®)

where|¢| = detg for a matrix¢. In these notations Robertson UR (3) re&8 (o (X)) >
C™(C (X)) for any quantum state. We shall now show that similar inequalities hold for
the other characteristic coefficients @fand C, namely

cP(¢p) =

C(0 (X)) = C™(C(X)) r=12...,n. (9)
The key observation to this aim is that the principle submatriee€X; , ..., X;; p),
h<ip<---<ip,

Oi1iy Oigip - - - Oy

Uizilaiziz e Uizi,

o(Xi,.... Xi;p)= M, ... i;0) =deto(X;,, ..., X;)

0;,i10iip + + + Oii,
(10)
can be regarded as uncertainty matrixfabservables(;,, ..., X; with C(X;,, ..., X;; p)
as the corresponding mean commutator matrix. Therefore the inequality (3) holds for the
principle minors as well:

deto (X;,, ..., X;; p) > detC(X;,, ..., Xi; p). (12)

It is worth recalling now that (X)) andC (X)) are non-negative definite [10] and therefore
all of their principle minors are also non-negative [13],

M(i1,...,i;;0) 20 M (i1, ...,i;C) = 0. (12)

From (12) and (7) we derive that the inequalities (9) do hold. We shall call these inequalities
the characteristic URfor n observables (Hermitian operators). The two sides of these
relations are invariant under similarity transformatians-> AcA~* andC — ACA~™.

The transformed matrix’ = Ao A~! can be considered as an uncertainty matrix for new

n observablesX’ in the same state iff A~' = AT as is seen from (5). Therefore
the characteristic UR (9) are invariant under linear transformation of the observables with
orthogonalA.

On the other hand, there are trace class invariant coefficients, related te any
matrix, and one can look for uncertainty inequalities involving these coefficients for the
physical matricesr and C. A series of such inequalities for positive definit&/ % 2N
dispersion matrices for 2 observables are established in [10] (the particular case of
canonical observables being considered in [11]),

N
Trio (X, 9% > 2723 (X, Xy DE k=12, J = (2 ‘01> (13)
=1

where X = A(p);;X;, A being the symplectic matrix which diagonalize$X; p) [10].
The traces Tiio (X, p)J)%* are invariant under symplectic transformations If the
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operatorsX; close a Lie algebrd with a Cartan—Killing tensog then Ti(o (X, p)g)%*
is invariant under the group of automorphisms bf At k = 1 = N one has
Tr(io (X, p)J)% = deto (X, p) and (13) coincides with (2).

3. Minimization of the characteristic uncertainty relations

The minimization of inequalities (1) and (2) proved useful in constructing states with
interesting physical and mathematical properties. States which minimize a certain
uncertainty relation will be called minimum uncertainty states (MUS) or intelligent states
(see [8, 10] and references therein). States which minimize (2) (or (1)) are calleétiBciar
(Heisenberg) MUS or intelligent states (or correlated coherent states [6]). For any pair
of observablesX, Y the necessary and sufficient condition for a stak¢ to minimize
Schibdinger UR (2) is|¥) to be an eigenstate of a complex combinatiornXofy [8],

(A +vAH W) = z|W) A=X+iY u,vecC. (14)

For X, Y being the quadratureg, g of boson annihilation operatar Schibdinger MUS
coincide [7] with standard (or canonical) squeezed states [1]. The family ob&ciger
MUS |z, u, v; k) for the two quadratures of the Weyl lowering operakar for the su(1, 1)
algebra was constructed in [8] using the analytic representation of Barut and Girardello [14].
The minimization of Robertson UR was studied in [10]. Robertson MUS exist for a
broad class of physical systems. It was shown [10] that group-related CS with maximal
symmetry for semisimple Lie groups are Robertson MUS for the quadratures of Weyl
lowering operators. For an odd numberof observablesX; a necessary and sufficient
condition for a statgW) to minimize (3) is|W) to be an eigenstate of a real linear
combination of all observables. This condition remains sufficient for evem = 2N,
as well. For evem another sufficient condition igV) to be an eigenstate af complex
combinations ofX;,

(Bai Xi) W) = (uapAp + va,sA,Tg)I‘IJ) = Za|¥) (15)

wherei =1,...,n,a,8=21,2,...,N, A, = X, +1X,,nx and summation over repeated
indices is adopted. The above conditions are satisfied byvtheode canonical CS«(= 1,
v =0, A, = a,); by canonical squeezed states{— vv’ = 1, A, = a,) and by canonical
even/odd CSy = 1, v = 0, A, = a?), i.e. these important in quantum optics states are
Robertson MUS for the quadratures of all anda? correspondingly [10].

Using the structure (7) of the characteristic coefficients and the non-negativity of the
principle minors involved one can easily establish the following minimization conditions
for (9).

Proposition 1.The rth-order characteristic UR (9) is minimized in a stqde) if |¥) is a
Robertson MUS for every set efobservableX;,, X;,, ..., X; ,1<i1 <iz <--- <i, <n.

The characteristic UR of maximal order= » is that of Robertson and its minimization
conditions were listed just above [10].

Now it is of principle importance to show that th¢h-order characteristic MUS for
r < n do exist. It is clear that the first-order characteristic UR is trivial since it reads
o114+ 092 + -+ +0,, = 0, where all variances;; = A%X; are non-negative in any state.
Its minimization is also clear—it is minimized in the common eigenstates;afnly. The
case ofr = n was examined in [10]. So we have to provide the minimizationtbforder
characteristic UR, X r < n.
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To this aim let us consider the family of«(1, 1) algebra related C%, u, v, w; k),
which are eigenstates of the general element of the algebra in the representati@ns
k=1 3andk=31,...,

uK_+vK, +wK3)|z,u, v, w; k) = z|z, u, v, w; k). (16)

Here K. = K1 £ 1K, are Weyl raising and lowering operators akg,3 are Hermitian
generators of the groufU (1, 1). The solution to equation (16) was obtained in [9, 15, 10],
the casav = 0 being solved previously in [8]. The large family laf «, v, w; k) contains all
SU(1, 1) group-related CS with symmetry (see [5] and references therein), thédhoher
K1—Ko; MUS |z, u, v, w = 0; k) = |z, u, v; k) containing the group-related CS with maximal
symmetry [8]. In the limitu = 1, v = 0 = w the CS|z; k) of Barut and Girardello [14]
are reproducediz; k) = |z,u = 1,v = 0, w = 0; k). In the analytic Barut—Girardello (BG)
representation (which can be shown to be validfet ;11, % as well) the operatork; act

as differential operators,

K. =n K_=2ki—i-r]d—2 K3=k+r;i a7)
dp  dp? dy
and the stateg, u, v, w : k) are represented (far # 0) by the analytic functions
@ (n;u, v, w) = N 1Fi(a, b; can) (18)
where N is the normalization factoly = k + z/1, b = 2k, ¢ = —(w +1)/2u, c1 = l/u,

| = vw?—4uv and 1Fi(a, b, z) is the confluent hypergeometric function (the Kummer
function) [16]. The limit/ = 0 can be easily taken in (18), and the more simple case of
u = 0 should be treated separately [9, 15, 10].

For the three observablés, » 3 we have two nontrivial characteristic UR, namely those
for r = 2 andr = n = 3 in (9). The Robertson relation for the three operat&is ; is
minimized in|z, u, v, w; k) for v = u* and realw andz [10]. Such normalized intelligent
states are, for example, tt#/(1, 1) group-related C3¢; k) with maximal symmetry,

g5 k) = N expl Ky )k, k) teC gl <L

These CS, which in the BG representation are represented by the analytic function
exp(¢n) of the variablen [8], obey equation (16) withw* = u, argr = —arg,
w = w* = |ul(1/|¢] — |¢]) andz = z* = k|u|(—|¢| + 1/|¢]), with u remaining arbitrary.
We are now ready to prove thgt; k) minimize the second-order UR as well.

According to proposition 1, a staf&) minimizes the second-order characteristic UR for
the three observables; » 3 if it is an eigenstate of the three combinatighs1 + 2K, =
uK_vK;+0K3, B1K1+ 83Kz =u'K_ VK +w'KsandBj Ko+ =u"K_v'K{+w"K3,
for some real or complegs 2, B, 5 and gy, 3,

(B1K1 + B2K2) W) = 2| V)
(BLK1 + B3K3)| V) = | W) (19)
(B3 K2+ B3K3)| W) = "W).

In the representation (17) the system (19) takes the form of second-order differential
equations. One can check that the functions

f,m)=n"e*" (20)
satisfy the system (19) forn = 0 and form = 1 — 2k if
: 1- ;2 / ’ { " sl ;
B1= |52r§2 p1= Zﬁsm Bz = 2"331_—@ (21)



8046 D A Trifonov ad S G Donev

the eigenvalues being = (k + m¢)2ipac%/(1 + ¢2), 7 = (k + m)B4(L — 2/ (1 + ¢?),

7" = (k+m)p5L+¢?/(1—¢?) (with B3, B and B> remaining arbitrary). This proves
that the group-related C&; k) are C5° and C{ characteristic MUS. Let us recall that
the groupSU (1, 1) has important (in quantum optics and other fields of quantum theory)
one-modek = 1, 3) and two-modeX = 3, 1, ...) boson representations. In the one-mode
case the C3¢; k = %1) coincides with the canonical squeezed vacuum [1].

In a similar manner, using the results of papers [8, 10, 15] for example, one can establish
that theSU (2) group-related CS with maximal symmetry (the Bloch CS) @& and C”
characteristic MUS.

Thus, the characteristic UR can be used for finer classification of quantum states. For
a given algebra they all are within the large set of eigenstates of general algebra element
(algebraic CS [9, 15]).

4. Concluding remarks

On the abstract matrix level Robertson proved [12, 17] thaHif= S 4 iK is non-
negative definite Hermitian matrix (whe®and K are real) then det > detK. Matrix

o(X) +iC(X) is Hermitian and non-negative, therefore det detC. Using Robertson’
result we have proved in the above that if the combinafichiK of two real matricesS

and K is non-negative and Hermitian then the characteristic coefficienfsafd K obey
the inequalities

Cc(S) = C(K) r=212,...,n. (22)

The importance of the characteristic coefficients of a matrix is surely beyond doubt. In
differential geometry and differential topology of fibre bundles with connections they are
widely used as generators of topological invariants of the bundles by means of the De Rham
cohomology of the corresponding base spaces [18]. In gauge field theories they are also
well known and appropriately used [19]. It is our belief that the characteristic inequalities
(22) will also be useful in the above-described fields.
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